
wingen-vignette

Background

wingen uses a moving window approach to create maps of genetic diversity. The method and its rationale are
described in Bishop et al. (2023) and on the Methods blog.

Example

To demonstrate how wingen works, we will use a subset of the data from the Bishop et al. (2023) simulation
example. These simulations were created using Geonomics (Terasaki Hart et al., 2022) to generate a realistic
landscape genomic dataset. In this simulation, spatial variation in genetic diversity is produced by varying
population size and gene flow across the landscape via heterogeneous carrying capacity and conductance
surfaces. These surfaces are based on an example digital elevation model of Tolkien’s Middle Earth produced by
the Center for Geospatial Analysis at William & Mary (Robert, 2020).

Load Middle Earth example

The small Middle Earth example dataset used here contains four objects which are loaded by
load_middle_earth_ex():

1. lotr_vcf - a vcfR object containing the genetic data

2. lotr_coords - a dataframe object containing sample coordinates

3. lotr_lyr - a raster object of the landscape (higher values indicate greater connectivity/carrying capacity)

4. lotr_range - a polygon outlining the “range” of the simulated species

library(wingen)

library(terra)

library(raster)

library(viridis)

library(sf)

library(ggplot2)
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load_middle_earth_ex()

#> 

#> -------------- middle earth example --------------

#> 

#> Objects loaded:
#> lotr_vcf: vcfR object (100 variants x 100 samples)

#> lotr_coords: dataframe with x and y coordinates

#> lotr_lyr: middle earth RasterLayer (100 x 100)

#> lotr_range: SpatialPolygonsDataFrame of spp range

#> 

#> --------------------------------------------------

# Genetic data

lotr_vcf
#> Loading required package: vcfR

#> Warning: package 'vcfR' was built under R version 4.3.2

#> 

#>    *****       ***   vcfR   ***       *****

#>    This is vcfR 1.15.0 

#>      browseVignettes('vcfR') # Documentation

#>      citation('vcfR') # Citation

#>    *****       *****      *****       *****

#> ***** Object of Class vcfR *****
#> 100 samples

#> 1 CHROMs

#> 100 variants

#> Object size: 0.1 Mb

#> 0 percent missing data

#> *****        *****         *****

# Coordinates

head(lotr_coords)

#>             x         y
#> 538  88.73547 -66.61610

#> 1397 78.50479 -23.24048

#> 1200 14.32163 -25.99363

#> 952  89.86373 -65.49860

#> 1177 45.42427 -23.13054



#> 383  98.89395 -13.88943

# Raster data

lotr_lyr

#> class      : RasterLayer 
#> dimensions : 100, 100, 10000  (nrow, ncol, ncell)

#> resolution : 1, 1  (x, y)

#> extent     : 0, 100, -100, 0  (xmin, xmax, ymin, ymax)

#> crs        : NA 

#> source     : memory

#> names      : lyr.1 

#> values     : 0, 1  (min, max)

# Map of data
plot(lotr_lyr, col = magma(100), axes = FALSE, box = FALSE)

points(lotr_coords, col = mako(1, begin = 0.8), pch = 3, cex = 0.5)



If users don’t have a raster layer of their landscape, they can generate one using their sample coordinates with
the coords_to_raster() function. The resolution of this raster can be tuned either with the agg (to aggregate) or
disagg (to disaggregate) arguments, or defined using the res argument. The res argument can either be a single
value (e.g., 0.00833) or a vector of two values with the x and y resolutions. The buffer argument can be used to
add an edge to the raster (i.e., buffer away from the coordinates).

ex_raster1 <- coords_to_raster(lotr_coords, buffer = 1, plot = TRUE)



ex_raster2 <- coords_to_raster(lotr_coords, buffer = 1, agg = 2, plot = TRUE)



ex_raster3 <- coords_to_raster(lotr_coords, buffer = 1, disagg = 4, plot = TRUE)



ex_raster4 <- coords_to_raster(lotr_coords, buffer = 1, res = 10, plot = TRUE)



Workflow

The workflow of wingen uses three main functions:

1. window_gd(), circle_gd(), or resist_gd() to generate moving window maps of genetic diversity

2. krig_gd() to use kriging to interpolate the moving window maps

3. mask_gd() to mask areas of the maps from (1) and (2) (e.g., to exclude areas outside the study region)

Different moving window calculations



There are three functions that can be used to generate moving window maps:

1. window_gd() uses a simple rectangular window with user-specified dimensions; this is the original method
described in Bishop et al. 2023

2. circle_gd() uses a circular window with a user-specified radius

3. resist_gd() uses a resistance distance-based window with a user-specified maximum distance (this can
be thought of as a circular window with a radius that varies depending on the resistance of the landscape
around it)

The main arguments that all three functions have in common are:

1. gen - An object of type vcfR or a path to a vcf file with genotype data. The order of this file matters! The
coordinate and genetic data should be in the same order, as there are currently no checks for this.

2. coords - sf points, or a matrix or dataframe with two columns representing the coordinates of the samples.
The first column should be x and the second should be y.

3. lyr - A SpatRaster or RasterLayer which the window will move across to create the final map. In most
cases, this will take the form of a raster of the study area.

4. stat - The genetic diversity summary statistic to calculate. Current genetic diversity metrics that can be
specified with stat include:

"pi" for nucleotide diversity (default) calculated using hierfstat::pi.dosage() (only works for bi-
allelic data).

"Ho" for average observed heterozygosity across all sites

"allelic_richness" for average number of alleles across all sites

"biallelic_richness" for average allelic richness across all sites for a biallelic dataset (this option is
faster than "allelic_richness"). When calculating “biallelic_richness”, users can choose to rarify
allele counts (as in hierfstat::allelic.richness()) by setting rarify_alleles = TRUE (the default) or
to use the raw allele counts by setting rarify_alleles = FALSE. We recommend performing allele
count rarefaction (rarify_alleles = TRUE) if there are missing values in the genetic data, but for
datasets with no missing data, it is faster to use the raw counts (rarify_alleles = FALSE).

"hwe" for the proportion of sites that are not in Hardy–Weinberg equilibrium, calculated using pegas
at the 0.05 level (other alpha levels can be specified by adding the sig argument; e.g., sig = 0.10).

"basic_stats" for a series of statistics produced by hierfstat::basic.stats() including mean
observed heterozygosity (same as Ho), mean gene diversities within population (Hs), G ene
diversities overall (Ht), and Fis following Nei (1987). Population-based statistics (e.g., FST) normally



reported by hierfstat::basic.stats() are not included as they are not meaningful within the
individual-based moving windows.

5. fact - To decrease computational time, we provide the option to aggregate the input raster layer by some
factor defined using the fact argument. Increasing fact will decrease the number of cells and thereby
decrease the number of calculations, with the trade-off that the resolution of the output layers will
decrease. Users should keep in mind that if they increase fact, they may simultaneously want to decrease
wdim because the proportion of the landscape covered by the neighborhood matrix could otherwise
increase substantially.

6. rarify - Users have the option to perform rarefaction by setting the rarify argument to TRUE. If rarify = 
TRUE, users then define rarify_n as the number of samples to rarify to and rarify_nit as the number of
iterations for rarefaction (e.g., if rarify_n = 4 and rarify_nit = 5, for each sample set, four random
samples will be drawn five times). Users can also set rarify_nit = "all"to use all possible combinations
of samples of size rarify_n within the window (for example, if rarify_n = 4 and the number of samples in
the window is 5, all 20 possible combinations of samples will be used). As the window moves across the
landscape, three things can occur based on the number of samples in the window: (1) if the number of
samples is lower than rarify_n, genetic diversity is not calculated and a raster value of NA is assigned, (2)
if the number of samples is equal to rarify_n, the genetic diversity statistic is calculated for those samples,
(3) if the number of samples is greater than rarify_n, rarefaction is implemented and that set of samples is
subsampled rarify_nit times to a size of rarify_n and the mean (or another summary statistic set using
fun) of those rarify_nit iterations is used. Note that if the number of samples is lower than min_n, a raster
value of NA will always be assigned, even if the number of samples is not less than rarify_n (i.e., if min = 
2 and rarify_n = 1 and the sample size is 1 in the window, then an NA value will be assigned; to change
this behavior so that genetic diversity is calculated, set min_n = 1)

If rarify = FALSE, rarefaction is not performed and only steps (1) and (2) from above occur such that: (1) if
the number of samples in the window is less than the min_n argument, genetic diversity is not calculated
and a raster value of NA is assigned, and (2) if the number of samples is equal to or greater than min_n,
the genetic diversity statistic is calculated for those samples. We highly encourage users to perform
rarefaction as genetic diversity statistics are sensitive to sample size. The main benefit of not performing
rarefaction is decreased computational time; however, this is not worth the trade-off in inaccuracy unless
you are confident that there is no effect of rarefaction after performing your analysis with and without
rarefaction.

Note: Coordinates and rasters used in wingen should be in a projected (planar) coordinate system such that
raster cells are of equal sizes. Therefore, spherical systems (including latitude-longitude coordinate systems)
should be projected prior to use. An example of how this can be accomplished is shown below. If no CRS is
provided, a warning will be given and wingen will assume the data are provided in a projected system.



Run moving window calculations with window_gd()

To create a moving window map with a rectangular window, use window_gd(). The main additional arguments to
window_gd() are:

1. wdim - Used to create the neighborhood matrix for the moving window based on the dimensions provided.
This argument can either be set to one value (e.g., 3) which will create a square window (e.g., 3 x 3), or
two values, which will create a rectangular window (e.g., 3 x 5). We encourage users to experiment with
different values of wdim to determine the sensitivity of their results to this parameter. Ideally, wdim would be
set with some knowledge of the study system in mind (e.g., the dispersal patterns and/or neighborhood
size of the study organism). A preview of the window size relative to the landscape can be obtained using
the preview_gd() function.

2. crop_edges - Whether to crop out the cells along the edge of the raster that are not surrounded by a full
window. Users may want to do so to avoid “edge effects” caused by incomplete windows along the borders
of the raster. As wingen is relatively insensitive to sample size, edge effects are not likely to have a very
strong effect on diversity estimates, so by default crop_edges = FALSE.

# First, we create example latitude-longitude coordinates and rasters

## Example raster:

lyr_longlat <- rast(

  ncols = 40, nrows = 40, xmin = -110, xmax = -90, ymin = 40, ymax = 60,
  crs = "+proj=longlat +datum=WGS84"

)

## Example coordinates:

coords_df <- data.frame(x = c(-110, -90), y = c(40, 60))

coords_longlat <- st_as_sf(coords_df, coords = c("x", "y"), crs = "+proj=longlat")

# Next, the coordinates and raster can be projected to an equal area projection, in this case the Goode 
Homolosine projection (https://proj.org/operations/projections/goode.html):

coords_eq <- st_transform(coords_longlat, crs = "+proj=goode")

lyr_eq <- project(lyr_longlat, "+proj=goode")

# Coordinates can be switched back to latitude-longitude the same way by replacing "goode" with 
"longlat"



Before running window_gd(), users can preview the moving window and the counts within each cell of the raster to
get a sense of how big the window is and what the density of counts looks like across their landscape. Here, we
provide the raster layer (lotr_lyr), the coordinates (lotr_coords), the window dimensions (7), the aggregation
factor (3), and the minimum sample number (min_n). min_n will be used to mask the sample count layer to show
how much of the landscape will be excluded due to low sample count. We specify method = window for a preview
of window_gd(), we will discuss other methods (i.e., circle and resist later).

preview_gd(lotr_lyr,

  lotr_coords,

  method = "window",

  wdim = 7,

  fact = 3,

  sample_count = TRUE,

  min_n = 2

)



#> class       : SpatRaster 

#> dimensions  : 34, 34, 1  (nrow, ncol, nlyr)

#> resolution  : 3, 3  (x, y)

#> extent      : 0, 102, -102, 0  (xmin, xmax, ymin, ymax)
#> coord. ref. :  

#> source(s)   : memory

#> name        : sample_count 

#> min value   :            2 

#> max value   :           11

Next, we run the moving window function with our vcf, coordinates, and raster layer. Here, we set the parameters
to calculate pi, using a window size of 7 x 7, an aggregation factor of 3, and rarefaction with a rarefaction size of



2 (i.e., minimum sample size of 2), and 5 iterations.

The L argument is used in the calculation of pi. If L = NULL (default), the function returns the sum over SNPs of
nucleotide diversity. Otherwise, the function returns the average nucleotide diversity per nucleotide given the
length L of the sequence. Users may want to set L differently depending on amounts of missing data, for
example, so that missing sites are not considered in the calculation.

We then plot the genetic diversity layer (the first layer of the produced raster stack) and the sample counts layer
(the second layer).

Note: you will get a warning that no CRS is found for the provided coordinates or raster and to check that the
CRS for these objects match. This is because these simulated data doesn’t have a CRS, but we know they
match, so we can ignore this warning

wgd <- window_gd(lotr_vcf,

  lotr_coords,

  lotr_lyr,

  stat = "pi",
  wdim = 7,

  fact = 3,

  rarify = TRUE,

  rarify_n = 2,

  rarify_nit = 5,

  L = 100

)
#> Warning in crs_check_window(lyr, coords): No CRS found for the provided coordinates. Make sure the 

coordinates and the raster have the same projection (see function details or wingen vignette)
#> Warning in crs_check_window(lyr, coords): No CRS found for the provided raster. Make sure the 

coordinates and the raster have the same projection (see function details or wingen vignette)

# The ggplot_gd function plots the genetic diversity layer

ggplot_gd(wgd, bkg = lotr_range) +

  ggtitle("Moving window pi") +

  # add coordinates

  geom_point(data = lotr_coords, aes(x = x, y = y), pch = 16)



# The plot_count function plots the sample count layer

ggplot_count(wgd) +

  ggtitle("Moving window sample counts")



You can also create base R plots of your results using plot_gd() and plot_count()

plot_gd(wgd, bkg = lotr_range, main = "Moving window pi")



plot_count(wgd, main = "Moving window sample counts")



Run moving window calculations with circle_gd()

To create a moving window map with a circular window, we can use circle_gd(). The main additional arguments
to circle_gd() are:

1. maxdist - maximum geographic distance used to define the neighborhood; any samples farther than this
distance will not be included (this can be thought of as the neighborhood radius). Can be provided as
either (1) a single numeric value or (2) a SpatRaster where each pixel is the maximum distance to be used
for that cell on the landscape (must be the same spatial scale as lyr). Similarly to wdim, we encourage
users to experiment with different values of maxdist to determine the sensitivity of their results to this



parameter and ideally set it with some knowledge of the study system in mind (e.g., the dispersal patterns
and/or neighborhood size of the study organism).

2. distmat - optional distance matrix output from get_geodist(); if not provided, circle_gd() will automatically
use the get_geodist() function to calculate the distance matrix instead.

Like before, we can use the preview_gd() function to preview parameter settings. This time we specify method = 
"circle" and need to provide maxdist. Before doing so, we can calculate the distance matrix using get_geodist()
which we can then use in both preview_gd() and circle_gd() to save time.

get_geodist() produces a distance matrix where the rows represent the cells of the raster and the columns are
the individuals. The values are the geographic distance between each cell and each individual. Note that the
input layer for get_geodist() must have the same resolution as the input layer for preview_gd() and circle_gd().
For example, if you want to run circle_gd() with fact = 3 and lyr = lotr_lyr, the input layer to get_geodist()
must be aggregate(lotr_lyr, 3). Alternatively, you can first create a new aggregated raster to be used for all
functions, as we have done below.

Note: if you want to get only the distances between your sample coordinates, set coords_only = TRUE.

# First, create a new aggregated raster

lotr_lyr3 <- aggregate(lotr_lyr, 3)

# Then calculate the distance matrix

distmat <- get_geodist(coords = lotr_coords, lyr = lotr_lyr3)

preview_gd(lotr_lyr3,

  lotr_coords,

  method = "circle",
  maxdist = 10,

  distmat = distmat,

  sample_count = TRUE,

  min_n = 2

)



#> class       : SpatRaster 

#> dimensions  : 34, 34, 1  (nrow, ncol, nlyr)

#> resolution  : 3, 3  (x, y)

#> extent      : 0, 102, -102, 0  (xmin, xmax, ymin, ymax)
#> coord. ref. :  

#> source(s)   : memory

#> name        : sample_count 

#> min value   :            2 

#> max value   :            9

Then, we can run circle_gd():



cgd <- circle_gd(lotr_vcf,

  lotr_coords,

  lotr_lyr3,

  stat = "pi",

  maxdist = 10,
  distmat = distmat,

  rarify = FALSE,

  L = 100

)

ggplot_gd(cgd, bkg = lotr_range) +

  ggtitle("Circle moving window pi")



# The plot_count function plots the sample count layer

ggplot_count(cgd) +

  ggtitle("Circle moving window sample counts")



For circle_gd() (and resist_gd()), you can also define maxdist with a raster to set the maximum distance (i.e.,
the radius) for each cell. In this case, we can use the carrying capacity/conductance map (lotr_lyr3) and
multiply it by 100 so that the radius will range from 0 to 100 based on the value of the raster.

vcgd <- circle_gd(lotr_vcf,
  lotr_coords,

  lotr_lyr3,

  stat = "pi",

  maxdist = lotr_lyr3 * 100,

  distmat = distmat,

  rarify = FALSE,

  L = 100



)

ggplot_gd(vcgd, bkg = lotr_range) +

  ggtitle("Circle moving window pi")

ggplot_count(vcgd) +

  ggtitle("Circle moving window sample counts")



Run moving window calculations with resist_gd()

To create a moving window map with resistance distances, use resist_gd(). The main additional arguments to
resist_gd() are:

1. maxdist - maximum cost distance used to define the neighborhood; any samples further than this cost
distance will not be included (this can be thought of as the neighborhood radius, but in terms of cost
distance). Can be provided as either (1) a single numeric value or (2) a SpatRaster where each pixel is the
maximum distance to be used for that cell on the landscape (must be the same spatial scale as lyr). As
stated before, we encourage users to experiment with different values of maxdist to determine the
sensitivity of their results to this parameter.



2. lyr - in addition to being the raster layer the window moves across, this will also serve as the conductivity
layer used to calculate resistance distances (higher values should mean greater conductivity).

3. distmat - optional distance matrix output from get_resdist(); if not provided, resist_gd() will automatically
use the get_resdist() function to calculate the distance matrix instead.

resist_gd() takes a longer time to run and we recommend taking advantage of parallelization, in particular for the
calculation of the distance matrix using get_resdist(). We also recommend first calculating the distance matrix
with get_resdist() and then providing it to resist_gd() using the distmat argument as this allows for resist_gd()
to be run quickly multiple times (i.e., to test different parameters) by avoiding repeating the costly distance
calculations. Note that lyr in both get_resdist() and in resist_gd() must have the same spatial scale (e.g., the
same resolution and extent).

As with get_geodist(), get_resdist() produces a distance matrix where the rows represent the cells of the raster
and the columns are the individuals. The values are the resistance distance between each cell and each
individual. If you want to get only the distances between your sample coordinates, set coords_only = TRUE.

Again, we can use the preview_gd() function to preview parameter settings. Here, we specify method = "resist"
and provide maxdist.

lotr_distmat <- get_resdist(coords = lotr_coords, lyr = aggregate(lotr_lyr, 3))

preview_gd(lotr_lyr,

  lotr_coords,

  method = "resist",

  maxdist = 60,

  distmat = lotr_distmat,

  fact = 3,

  sample_count = TRUE,
  min_n = 2

)





#> class       : SpatRaster 

#> dimensions  : 34, 34, 1  (nrow, ncol, nlyr)

#> resolution  : 3, 3  (x, y)

#> extent      : 0, 102, -102, 0  (xmin, xmax, ymin, ymax)
#> coord. ref. :  

#> source(s)   : memory

#> name        : sample_count 

#> min value   :            2 

#> max value   :           21



rgd <- resist_gd(lotr_vcf,

  lotr_coords,

  lotr_lyr,

  distmat = lotr_distmat,

  stat = "pi",
  maxdist = 60,

  fact = 3,

  rarify = FALSE,

  L = 100

)

ggplot_gd(rgd, bkg = lotr_range) +

  ggtitle("Resistance moving window pi")



ggplot_count(rgd) +

  ggtitle("Resistance moving window sample counts")



In addition to using continuous rasters of connectivity you can also use rasters to designate passable and
impassable areas. This can be useful for designating boundaries you don’t want windows to extend across (e.g.,
mountain ranges) or extend between (e.g., rivers).

# create layer
resist_lyr <- rast(aggregate(lotr_lyr, 5))

# create an impassable area down the middle coded as NA

resist_lyr[] <- 1

resist_lyr[ext(40, 60, -100, 0)] <- NA

# get resistance distances



distmat <- get_resdist(coords = lotr_coords, lyr = resist_lyr)

# plot preview

preview_gd(resist_lyr, lotr_coords, method = "resist", distmat = distmat, maxdist = 10)





#> class       : SpatRaster 

#> dimensions  : 20, 20, 1  (nrow, ncol, nlyr)

#> resolution  : 5, 5  (x, y)

#> extent      : 0, 100, -100, 0  (xmin, xmax, ymin, ymax)
#> coord. ref. :  

#> source(s)   : memory

#> name        : sample_count 

#> min value   :            0 

#> max value   :           10

# create moving window map

resist_gd <- resist_gd(



  lotr_vcf,

  lotr_coords,

  resist_lyr,

  maxdist = 10,

  distmat = distmat
)

ggplot_gd(resist_gd)

Transforming the moving window maps



Krige results

To produce smoother maps of genetic diversity, we provide the function krig_gd() which creates a spatially
interpolated raster from the moving window raster produced by the moving window functions. This function uses
the autoKrige() function from the R package automap to perform kriging on the moving window raster using an
automatically generated variogram. Note that the moving window raster stack, including both the genetic
diversity layer and the sample count layer, can be used to generate kriged maps of both genetic diversity and
sample count.

Kriging is performed by first transforming the moving window layer into a set of coordinates with corresponding
genetic diversity (or sample count) values and then interpolating using these coordinates across the grid
provided. Because of this, it is important to keep in mind how the coordinates from the moving window raster and
the grid align. If the resolution of the moving window raster is much lower than that of the grid, there are fewer
points for interpolation which can result in grid-like artifacts during kriging.

To deal with this issue, users can either (1) resample their moving window raster layers and grid layers to the
same resolution using the resample argument, or (2) manually disaggregate or aggregate either the moving
window or grid layers using the agg_r, disagg_r, agg_grd, or disagg_grd arguments. Generally, if users want a
smoother resulting surface, a higher resolution grid layer should be used (this can be accomplished by using the
disagg_grd argument to disaggregate the grid layer). The resampling, aggregation, and disaggregation options
currently only work if the object provided to create the grid is a raster layer. Keep in mind that increasing the
resolution of the moving window layer (i.e., either by resampling or disaggregating) can increase computational
time substantially as this increases the number of coordinates being used for kriging. This is also the case for
increasing the resolution of the grid layer, though to a lesser extent.

To run this function, we provide the moving window raster stack output, the indices of the layers we want to krige,
and the raster layer to interpolate across. We also disaggregate the original layer by a factor of two to get a
smoother output surface (users should play around with this parameter). The output of this function is a raster
stack of the kriged input layers.

# Note: this step can take a little while

# index = 1 kriges the first layer in wgd (the genetic diversity layer)

kgd <- krig_gd(wgd, index = 1, grd = lotr_lyr, disagg_grd = 2)

#> [using ordinary kriging]

ggplot_gd(kgd) +

  ggtitle("Kriged pi")



Note: By default, the kriging method is set to krig_method = "ordinary" for ordinary/simple kriging (model
formula: ~ 1) which assumes that the mean and variance are constant across space. Alternatively, krig_method
can be set to "universal" for universal kriging (model formula: ~ x + y), which allows the mean to vary across
locations, while variance is held constant.

For information on the differences between universal and ordinary kriging, we recommend these articles:

What are the different kriging models?

Kriging interpolation

kgd_ordinary <-

  krig_gd(

    wgd,

https://desktop.arcgis.com/en/arcmap/latest/extensions/geostatistical-analyst/what-are-the-different-kriging-models-.htm
https://www.publichealth.columbia.edu/research/population-health-methods/kriging-interpolation


Users can optionally get the full output from autoKrige()

    index = 1,

    grd = lotr_lyr,

    disagg_grd = 2,

    krig_method = "ordinary"

  )
#> [using ordinary kriging]

ggplot_gd(kgd_ordinary) + ggtitle("Kriged pi")



Note: autoKrige() does not work for non-projected systems (i.e., latitude-longitude) and will throw an error. See
above example for how latitude-longitude coordinates and rasters can be transformed.

Note: Kriging can produce values that fall outside the range of possible values (e.g., genetic diversity values less
than 0 or greater than the possible maximum). By default, in order to ensure that the values are bounded within
the range of possible values, krig_gd converts all values greater than the maximum of the input raster to that
maximum (upper_bound = TRUE), and all values less than the minimum of the input raster to that minimum
(lower_bound = TRUE). Users can turn off this functionality by setting lower_bound and upper_bound to FALSE. Users
can also set their own custom lower_bound and upper_bound values (e.g., for heterozygosity or pi, you may want to
set lower_bound = 0 and upper_bound = 1).

Mask results

Next, we mask the resulting kriged layers. Masking can be performed using a variety of methods.

Method 1: Mask using the carrying capacity layer to exclude any areas where the carrying capacity is lower than
0.1. Alternatively, one could use a species distribution model or habitat suitability model to exclude areas where
the probability of presence is very low:

kgd_autoKrige <-

  krig_gd(

    wgd,

    index = 1,

    grd = lotr_lyr,
    disagg_grd = 2,

    autoKrige_output = TRUE

  )

#> [using ordinary kriging]

summary(kgd_autoKrige)

#>                  Length Class      Mode

#> raster           1      SpatRaster S4  

#> autoKrige_output 4      autoKrige  list

# Disaggregate lotr_lyr to make it the same resolution as kgd before masking

## Note: lotr_lyr is a RasterLayer which we convert to a SpatRaster with rast()

mask_lyr <- disagg(rast(lotr_lyr), 2)

mgd <- mask_gd(kgd, mask_lyr, minval = 0.1)



Method 2: Mask the layer using a species range map (in this case, an sf polygon) to exclude areas falling
outside the species range.

ggplot_gd(mgd) +

  ggtitle("Kriged & carrying capacity masked pi")

mgd <- mask_gd(kgd, lotr_range)

ggplot_gd(mgd) +

  ggtitle("Kriged & range masked pi")



Method 3: Mask the layer using a spatial Kernel Density Estimation (KDE) of sample density to exclude areas
with low sampling density using the SpatialKDE package:

# First, install and load the SpatialKDE package

if (!require("SpatialKDE", quietly = TRUE)) install.packages("SpatialKDE")
library(SpatialKDE)

# Note: this code is not evaluated when building the vignette as it requires the SpatialKDE package

# Spatial KDE requires an sf data.frame containing only POINTS that is in a projected coordinate system
# The simulated coordinates are not projected, but for the purpose of this example, we'll pretend they 

are projected under the Goode Homolosine projection



Another nice visualization option is to add a “background” to your plots in the form of a raster or other sp or sf
object (e.g., a country or range boundary) which can help provide geographic context:

# This kind of arbitrary setting of crs should not be done for real data (see above example for how to 
properly project coordinates)

lotr_sf <- st_as_sf(lotr_coords, coords = c("x", "y")) %>% st_set_crs("+proj=goode")

# The grid layer must also be a RasterLayer for SpatialKDE
# Here, we use the kriged raster as our grid to get a KDE layer of the same spatial extent and 

resolution

grid <- raster(kgd)

# See the SpatialKDE package for more options and details about using KDE

kde_lyr <- kde(

  lotr_sf,

  kernel = "quartic",

  band_width = 15,
  decay = 1,

  grid = grid,

)

# Visualize KDE layer

ggplot_count(kde_lyr) +

  ggtitle("KDE")

# Mask with mask_gd
mgd <- mask_gd(kgd, kde_lyr, minval = 1)

ggplot_gd(mgd) +

  ggtitle("Kriged & sample density masked pi")

ggplot_gd(mgd, bkg = lotr_range) +

  ggtitle("Kriged & masked pi")



Parallelization

To increase computational speed, users can perform any of the moving window functions calculations with
parallelization using future::plan().

Checkout the furrr package documentation for more details on setting up the back end for parallelization.

# Note: this code is not evaluated when building the vignette as it spawns multiple processes

# setup parallel session

future::plan("multisession", workers = 2)

https://furrr.futureverse.org/


Note: the parallel and ncores arguments have been deprecated as of wingen 2.0.1.

Other genetic diversity metrics

You can calculate multiple statistics at once by providing a vector of statistic names to stat.

wgd <- window_gd(lotr_vcf,

  lotr_coords,

  lotr_lyr,

  stat = "pi",
  wdim = 7,

  fact = 3,

  rarify_n = 2,

  rarify_nit = 5,

  rarify = TRUE

)

# end parallel session

future::plan("sequential")

multistat_wgd <- window_gd(lotr_vcf,

  lotr_coords,

  lotr_lyr,

  stat = c("pi", "Ho", "biallelic_richness"),

  wdim = 7,

  fact = 3,

  rarify = FALSE,

  L = 100
)

ggplot_gd(multistat_wgd, bkg = lotr_range)

#> [[1]]



#> 

#> [[2]]



#> 

#> [[3]]



"hwe" and "basic_stats" take a bit longer to calculate, so here we change some parameters and reduce the
dataset for the purpose of the example:

hwe_wgd <- window_gd(lotr_vcf[1:10, ],

  lotr_coords,
  lotr_lyr,

  stat = "hwe",

  wdim = 3,

  fact = 5,

  rarify = FALSE,

  L = 100,

  sig = 0.10



)

bs_wgd <- window_gd(lotr_vcf[1:10, ],

  lotr_coords,

  lotr_lyr,
  stat = "basic_stats",

  wdim = 3,

  fact = 5,

  rarify = FALSE,

  L = 100

)

ggplot_gd(hwe_wgd, bkg = lotr_range)



ggplot_gd(bs_wgd, bkg = lotr_range)

#> [[1]]



#> 

#> [[2]]



#> 

#> [[3]]



#> 

#> [[4]]



General moving window
We provide a window_general function that can be used to make moving window maps for other types of data
inputs and functions. Unlike window_gd, window_general does not require a vcfR object or a path to a vcf file as
input.

The required input (x) depends on the statistic (stat) being calculated.

For the standard genetic diversity statistics:

If stat = "pi" or "biallelic_richness", x must be a dosage matrix with values of 0, 1, or 2 (Note: rows
must be individuals).



If stat = "Ho", x must be a heterozygosity matrix where values of 0 = homozygosity and values of 1 =
heterozygosity (Note: rows must be individuals).

If stat = "allelic_richness", x must be a genind type object.

If stat = "basic_stats", x must be a hierfstat type object.

For other statistics:

If x is a vector, stat can be any function that can be applied to a vector (e.g., stat = mean, var, sum, 
etc.).

If x is a matrix or data frame (Note: rows must be individuals), stat can be any function that takes a matrix
or data frame and outputs a single numeric value (e.g., a function that produces a custom diversity index).
(Note: this functionality has not have been tested extensively and may produce errors, so use with
caution).

As an example, let’s create a moving window map of our raster layer values (e.g., carrying capacity and
conductance, in this case) at the sample coordinates:

# First, we extract the raster values at those coordinates
vals <- extract(lotr_lyr, lotr_coords)

# Next, we run the window_general function with the env vector and set the `stat` to mean

# Note: we can also provide additional arguments to functions, such as na.rm = TRUE

we <- window_general(vals,

  coords = lotr_coords,

  lyr = lotr_lyr,

  stat = mean,

  wdim = 7,
  fact = 3,

  rarify_n = 2,

  rarify_nit = 5,

  rarify = TRUE,

  na.rm = TRUE

)

ggplot_gd(we) +

  ggtitle("Mean raster value")



Other genetic data input file types in
wingen
Although the default input data type for wingen is a VCF file, which is a standard file type to encode genomic
data, wingen can accept a genind object as input to calculate allelic richness using window_general(). Given that
some wingen functionality can be feasible using a genind object, users could easily convert various other genetic
data file types to then run wingen.

For example, genepop (.gen) is a typical file format for encoding microsatellite data, in which each allele within a
locus is coded using a two- or three-digit system (i.e., in a diploid organism, in a two-digit system, each locus
would be assigned four digits specifying each of two alleles. In a three-digit system in the same organism, each



locus would be assigned six digits encoding those same two alleles). Users can convert a genepop file into a
genind object using the read.genepop() function in the adegenet package, which automatically reads in a .gen file
as a genind object. In many cases, microsatellite data may not be biallelic, and may contain more than one
observed allele at a given locus; in such cases, running window_general() with a genind object is still feasible.

An example of how one could use a genind object as input into window_general() is as follows:

# We use the vcfR package to convert vcf to genind for our example

library(vcfR)

# Convert existing vcf example file into genind object:

genind <- vcfR2genind(lotr_vcf)

# Run window_general with no rarefaction

we_gi <- window_general(genind,

  coords = lotr_coords,
  lyr = lotr_lyr,

  stat = "allelic_richness",

  wdim = 7,

  fact = 3,

  na.rm = TRUE

)

# Plot results

ggplot_gd(we_gi) +
  ggtitle("Allelic richness")




